1 DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
porterbrogan14 edited this page 2 days ago


Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled versions varying from 1.5 to 70 billion parameters to build, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled versions of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) developed by DeepSeek AI that uses support learning to boost thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A key differentiating function is its support learning (RL) step, which was utilized to fine-tune the model's reactions beyond the standard pre-training and tweak procedure. By including RL, DeepSeek-R1 can adapt more efficiently to user feedback and goals, ultimately boosting both significance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, indicating it's equipped to break down complicated inquiries and factor through them in a detailed manner. This assisted reasoning process allows the design to produce more accurate, transparent, higgledy-piggledy.xyz and detailed responses. This model combines RL-based fine-tuning with CoT abilities, aiming to generate structured actions while concentrating on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has captured the industry's attention as a versatile text-generation model that can be incorporated into different workflows such as representatives, sensible reasoning and wiki.snooze-hotelsoftware.de data interpretation tasks.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion criteria, enabling efficient reasoning by routing queries to the most pertinent specialist "clusters." This approach allows the model to focus on different problem domains while maintaining general performance. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more effective models to simulate the behavior and reasoning patterns of the larger DeepSeek-R1 design, utilizing it as a teacher model.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this design with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous material, and examine models against crucial safety criteria. At the time of writing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create numerous guardrails tailored to various use cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you need access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To ask for a limit boost, produce a limitation boost request and reach out to your account team.

Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For instructions, see Set up approvals to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, avoid damaging content, and evaluate designs against crucial safety criteria. You can execute precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to evaluate user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The general circulation includes the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for reasoning. After receiving the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the last result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following sections show inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, select Model brochure under Foundation models in the navigation pane. At the time of writing this post, you can use the InvokeModel API to invoke the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and select the DeepSeek-R1 model.

The design detail page provides necessary details about the model's abilities, prices structure, and application standards. You can find detailed use directions, including sample API calls and code snippets for combination. The design supports various text generation jobs, including content production, code generation, and concern answering, utilizing its reinforcement discovering optimization and CoT reasoning abilities. The page also includes deployment options and licensing details to assist you get started with DeepSeek-R1 in your applications. 3. To begin utilizing DeepSeek-R1, choose Deploy.

You will be prompted to configure the deployment details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Number of circumstances, get in a number of instances (in between 1-100). 6. For Instance type, choose your circumstances type. For optimum efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended. Optionally, you can configure advanced security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service role authorizations, and file encryption settings. For the majority of utilize cases, the default settings will work well. However, for implementations, you may wish to review these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to begin utilizing the design.

When the deployment is total, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in play ground to access an interactive user interface where you can try out various triggers and change design specifications like temperature level and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for ideal outcomes. For example, material for inference.

This is an exceptional method to check out the model's reasoning and text generation abilities before integrating it into your applications. The play area provides immediate feedback, helping you comprehend how the model reacts to numerous inputs and letting you fine-tune your prompts for optimal outcomes.

You can quickly check the design in the play area through the UI. However, to conjure up the deployed model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference using guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to perform inference using a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually created the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime customer, configures inference criteria, setiathome.berkeley.edu and sends a demand to create text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML solutions that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart provides two convenient techniques: using the instinctive SageMaker JumpStart UI or it-viking.ch executing programmatically through the SageMaker Python SDK. Let's check out both techniques to help you pick the method that finest fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design web browser displays available designs, with details like the company name and model abilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card. Each model card reveals crucial details, including:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if appropriate), showing that this design can be signed up with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to invoke the design

    5. Choose the design card to view the design details page.

    The design details page includes the following details:

    - The design name and company details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab consists of important details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage guidelines

    Before you release the model, it's advised to evaluate the model details and license terms to validate compatibility with your use case.

    6. Choose Deploy to continue with release.

    7. For Endpoint name, utilize the instantly generated name or produce a custom-made one.
  1. For example type ¸ choose an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, enter the number of circumstances (default: 1). Selecting appropriate circumstances types and counts is important for expense and efficiency optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we highly advise adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
  4. Choose Deploy to deploy the model.

    The release process can take numerous minutes to finish.

    When release is complete, your endpoint status will change to InService. At this moment, the model is all set to accept reasoning demands through the endpoint. You can monitor the implementation progress on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the implementation is total, you can conjure up the model using a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get begun with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the essential AWS authorizations and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for inference programmatically. The code for releasing the model is offered in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Tidy up

    To avoid undesirable charges, complete the actions in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the model utilizing Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace releases.
  5. In the Managed deployments area, locate the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're erasing the right deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business develop ingenious solutions using AWS services and accelerated calculate. Currently, he is focused on developing strategies for fine-tuning and enhancing the inference performance of big language models. In his leisure time, Vivek enjoys hiking, viewing motion pictures, and trying various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about building options that assist clients accelerate their AI journey and unlock organization worth.